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its trisulfate salt and has been converted to its hexahydrochloride by using 
an anion-exchange resin. Compounds 16 and 17 are available from 
Strem Chemicals, Inc., and were converted to their hydrochloride salts. 
The sodium salts of ATP and ADP and the lithium-potassium salt of 
acetyl phosphate were obtained from Boehringer Mannheim. All other 
chemicals used were high-purity commercial products. 

Methods. 31P NMR spectra were recorded at 81 MHz on a Bruker 
SY 200 or at 121.42 MHz on a Varian XL300; chemical shifts in ppm 
are relative (+, downfield) to an external reference of 85% H3PO4. Probe 
temperature was regulated by a variable-temperature accessory. The use 
of low decoupler power for heteronuclear decoupling at the reported 
concentrations of reagents and salts in 5-mm NMR tubes did not result 
in apparent temperature variations. This contrasts with previous studies 
wherein, using a 2-mL sample in a 10-mm tube, the temperature was not 
accurately maintained by the variable-temperature control.1 lb 

The solution pH was recorded at 22 or 25 °C with a Metrohm 636 
titrimeter; adjustments to the desired pH of 1- or 2-mL samples con­
taining the ligand and substrate were made by using ~ 5 NaOH or HCl. 
The buffer used in this study was collidine (pA"a 7.32) at pH 7.6. 

Kinetic studies were performed by following the time-dependent 
change in the integrals from the resolved 31P NMR signals of P0, P^, and 
PT of ATP and the peaks for inorganic phosphate, pyrophosphate, acetyl 
phosphate, and phosphoryl derivatives of the macrocycles 1 and 4. 
Calibration curves were employed when the integral ratios were not equal 

1. Introduction 

In a recent paper, Dewar1 has examined, qualitatively, the 
mechanisms of two-bond reactions by using the Evans-Pola-
nyi2/Evans-Warhurst3 diabatic surface model. As a result of this 
analysis, Dewar was able to derive the rule that synchronous 
multibond mechanisms are normally prohibited. Furthermore, 
exceptions to this rule were to be expected1,2 when the transition 
state for the synchronous multibond mechanism is strongly sta­
bilized by the resonance interaction between reactant-like and 
product-like diabatic surfaces. Dewar1 has suggested that this 
situation is most likely to occur for Woodward-Hoffmann allowed 
reactions, Our objective in this paper is to examine this conjecture 
in some detail for the particular case of two-bond additions. We 
shall proceed first in a similar fashion to Dewar1 with qualitative 
arguments and then present the results obtained with a quantum 
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because of variaions in the 31P relaxation times. By this method of 
analysis the calculated standard deviation for the observed rates was 6%. 

In a typical experiment, a 1.0- or 2.0-mL solution containing 0.010 
or 0.030 M ATP, the polyamine as its hexahydrochloride or hydro-
bromide salts (0.010, 0.015, or 0.030 M), and, when indicated, added 
buffer or salts in 10% D 2 0 / H 2 0 were placed in the NMR probe in 5-
or 10-n.m tubes at the temperature indicated. By the use of a kinetic 
program an adequate number of acquisitions were accumulated for each 
sequential spectrum over a period of several half-lives. 
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mechanical implementation of the same model for a few examples. 
Recently we have developed4,5 a method for the quantitative 

analysis of potential energy surfaces in terms of diabatic surface 
methods, first proposed by Evans et al.2,3 This analysis has been 
applied successfully to our M C - S C F transition structure com­
putations on the 1,2- and 1,3-sigmatropic shift in propene,6 the 
cycloaddition of two ethylenes,7,8 and the 1,3-dipolar cycloaddition 
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Abstract: Diabatic surfaces for two-bond cycloaddition reactions are examined in terms of a diabatic surface analysis which 
includes the computation of the resonance interaction between the reactant-like and product-like diabatic surfaces. A qualitative 
analysis and rigorous numerical computations are presented for a concerted synchronous mechanism (a two-bond process), 
a concerted asynchronous mechanism (a concerted one-bond process), and the first step of a two-step mechanism (a nonconcerted 
one-bond process) for both "allowed" and "forbidden" processes. The results illustrate that the resonance interaction is the 
dominant factor which controls the mechanistic preference between two-bond and one-bond processes. For a Woodward-Hoffmann 
forbidden process, the magnitude of the resonance interaction is found to be much smaller for the (forbidden) synchronous 
process than for the one-bond process; this leads to the expected preference for the one-bond process. For a Woodward-Hoffmann 
allowed process in the comparison of a concerted two-bond mechanism and the first step of a two-step mechanism, it is found 
that magnitude of the resonance interaction at the transition structure geometry can lead to a preference for the concerted 
process. 
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of acetylene and fulminic acid.9 In these calculations we were 
able to correlate the transition structures with diabatic surface 
intersections. The important feature of the model proposed in 
ref 4 and 5 is the association of the reactant-like bonding situation 
or the product-like bonding situation with diabatic surfaces 
constructed from wave functions built from the molecular orbitals 
of the isolated fragments. Thus, the diabatic surfaces are based 
upon a linear combination of Heitler-London, no-bond, and 
charge-transfer configurations that are familiar from valence-bond 
approaches (see for example, ref 10). 

In our previous diabatic surface work,4-9 we have used a com­
putational procedure that did not include the calculation of the 
resonance interaction (i.e., interaction matrix element) between 
the diabatic surfaces. In order to examine the conjecture of 
Dewar1 and Evans et al.2,3 concerning the role of the resonance 
interaction for Woodward-Hoffmann allowed reactions, we have 
extended our previous computational procedure to enable the 
calculation of the resonance interaction effect. Further, in previous 
work we have used the MO of the fragments (an MO-VB ap­
proach) to construct the diabatic surfaces. In order to remain 
close to the VB formalism of Evans,3 we have used the original 
Heitler-London (HL-VB) formalism in which the orbitals used 
in the construction of the diabatics are localized onto atoms. 

2. Qualitative Discussion of Two-Bond Reactions within the 
Evans-Polanyi Diabatic Surface Model 

In the diabatic surface model,2"5 the adiabatic surface of a 
reaction results from the interaction of two diabatic surfaces: 
reactant-like and product-like. The transition structure is located 
near the minimum of the seam of intersection of the two diabatic 
surfaces. The diabatic surfaces themselves correspond to wave 
functions built from Heitler-London configurations (involving 
open-shell spin-coupled fragments), and charge-transfer config­
urations (electron transfer between fragments). These configu­
rations are constructed from atom-localized MC-SCF orbitals. 
The adiabatic states are of the complete active-space (CAS) type. 

In general, one identifies a bonding situation (reactant-like or 
product-like) with a Heitler-London configuration. However, in 
order to describe this bonding situation (i.e., diabatic surface), 
at finite interfragment separation, we must allow for charge 
transfer. In practical computation, we shall use an effective 
Hamiltonian (for a comprehensive review see ref 11), in which 
the diabatic-state energies are obtained as the diagonal matrix 
elements, the resonance interactions are obtained as the off-di­
agonal matrix elements, and the adiabatic states are obtained as 
the eigenvalues. The diabatic states are obtained from the pro­
jection of the full CI wave function (built from atom-localized 
MC-SCF orbitals) onto the subspace of the (product-like and 
reactant-like) Heitler-London configurations. Thus, the diabatic 
wave functions are obtained as an orthogonal VB expansion of 
HL and charge-transfer configurations built from localized or­
bitals. However (as we shall presently discuss), as a consequence 
of the projection onto the HL configurations, the adiabatic wave 
function is obtained as a combination of the projected HL con­
figurations alone. Thus, the diabatic energies corresponding to 
these projected HL configurations, obtained from the effective 
Hamiltonian (and the projected HL configurations themselves), 
must be interpreted as if the HL configurations had been con­
structed from distorted nonorthogonal AO (as in the Coulson-
Fischer12 calculations on the hydrogen molecule). Charge transfer 
causes the orthogonal-atom-localized AO to distort, becoming 
nonorthogonal, and increases the overlap between the orbitals 
involved in the charge transfer. We now proceed to summarize 
the main features of this approach. 
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• 
MACTKW COMMUTE 

Figure 1. Qualitative diabatic curves for two-bond cycloadditions. (A, 
A', B, B') One-bond process. (C, D) Two-bond process. 

Scheme I 

It is appropriate to illustrate the development of the theory with 
the aid of an example that will describe a two-bond cycloaddition. 
We assume that the problem can be described by four active 
orbitals. The reactants have two singlet coupled HL bond ei-
genfunctions (Ia, 1-2 and 3-4 in Scheme Ia), while in the product 
(Ib, Scheme Ib) either two new bonds (1-4 and 2-3) are formed 
or one bond is formed (Ic, 1-4 of Scheme Ic) with a diradical pair 
(2-3). 

We now represent (in a qualitative manner) the energy changes 
taking place in the reaction of Ia to give either Ib or Ic in terms 
of the diabatic energies of the bond-breaking process (the energy 
of the bond eigenfunction Ia) and the bond-forming process (the 
energy of the bond eigenfunction Ib/Ic) as a function of the 
reaction coordinate projected onto the shorter of the two new 
bonds. We intend to justify in some detail that the resultant 
diabatic curves will have the form given in Figure 1 (in the absence 
of symmetry). 

The curves A/A' represents the reactant-like diabatic curve 
for an asynchronous concerted/nonconcerted one-bond reaction 
(Ia to Ib/Ic), while the curves B/B' is the analogous product-like 
diabatic curve. The curves C and D represent the reactant-like 
and product-like diabatic curves for the concerted synchronous 
two-bond process (Ia to Ib). Note that the diabatic curves MUST 
coincide at the geometry of the products and the reactants for 
the concerted mechanism. This is not the case in Figure 2 of ref 
1 but must be the case for the two-bond reaction considered in 
this paper since the reactants and products of the two-bond 
concerted reaction are the same. The curves A'/B' for the two-step 
reaction must terminate on the product side of the diagram at 
different points (Z'/V) from the concerted process (Z/Y) since 
the initial product of the two-step reaction is the diradical in­
termediate Ic. Of course, there will be a second barrier in the 
two-step, one-bond process corresponding to the formation of the 
second bond going from Ic to Ib. However, the HL bond ei-
genfunctions Ib and Ia correspond to the same spin coupling, and 
thus this barrier will be of conformational origin (a simple ro­
tational potential) and will not be expected to be rate-determining. 
This observation is in contrast to the conjecture in ref 1 where 
a second diabatic intersection (of unexplained origin) is assumed 
for the second step of the nonconcerted process. As we shall 
presently show, our conjecture is supported by numerical results. 

Our task is now to justify the details of the shapes of the diabatic 
curves shown in Figure 1. We begin with the simplest qualitative 
arguments and then progress to a more detailed argument based 
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upon the semiempirical HL valence bond scheme. In a later part 
of the paper, these arguments are substantiated with the results 
of numerical computation for specific examples. 

We begin by observing that the product-like diabatic is more 
attractive for the synchronous concerted two-bond reaction (curve 
D) than for the one-bond reaction (curves B/B'). This fact is 
immediately apparent from the fact that, at a given point on the 
reaction coordinate, two partly formed bonds must always have 
a lower energy than one partly formed bond. Similarly, the 
reactant-like diabatic must be more repulsive for the synchronous 
two-bond concerted reaction (curve C) than for the one-bond 
reaction (curves A/A'). Again, this observation arises from the 
fact that the energy of two partly broken bonds in the reactant-like 
diabatic associated with the concerted two-bond process must 
always be higher that the energy associated with the one-bond 
process where the two reactant bonds will not have broken to the 
same extent. However, the interfragment distance will be shorter 
for the one-bond process than for the two-bond process (i.e., the 
transition structure for the one-bond process has a smaller in­
terfragment separation). Thus, the two opposing effects will cancel 
approximately. As a consequence, we are led to the conjecture 
(see Figure 1) that the intersection point of the reactant-like and 
product-like diabatic curves is predicted to be at a similar value 
of the energy. It would thus appear that the magnitude of the 
resonance interaction between the reactant-like and product-like 
diabatic curves may control the mechanistic preference for a 
one-bond or two-bond mechanism. 

We must emphasize that the very different behavior of the 
diabatic surfaces as shown in Figure 1 of the present work when 
compared with Figures 2 and 3 of ref 1 arises from the fact that 
we have recognized the requirement that the diabatic curves B 
and D or A and C must have common end points. 

We now extend the preceeding qualitative discussion by using 
the methodology of semiempirical HL-VB theory. We reem-
phasize that these arguments will be further substantiated for 
specific examples using rigorous numerical computation. In the 
semiempirical HL-VB method (for a modern critical discussion, 
the reader is referred to the standard textbook13 of McWeeny and 
Sutcliffe, Chapter 6), one uses the energy expressions of the various 
HL-VB configurations as though the orbitals that are used to 
construct the HL configurations were orthogonal. The exchange 
integrals, Ky, that occur in the resulting energy formulas are then 
replaced by the Heitler-London expression (eq 1) for a single bond 

Ktj = mm + 2s,j[i\h\j] (i) 

allowing for the nonorthogonality of the orbitals where the square 
of the overlap which occurs in the denominator of the HL ex­
pression has been neglected. As we shall presently discuss, our 
numerical implementation of HL-VB scheme using an effective 
Hamiltonian needs no such approximations. Of course, the rig­
orous expressions for the matrix elements between HL-VB bond 
eigenfunctions built from nonorthogonal orbitals involve powers 
of the overlap, and the approximation just discussed is consistent 
with keeping only those terms where one neglects all terms where 
the overlap occurs with a higher power than 1. Clearly, the second 
term in eq 1 will be negative and large in magnitude relative to 
the first. While these approximations are not adequate for detailed 
numerical computation, at this stage we are interested in quali­
tative arguments only, and this approach should give us an estimate 
of the dominant effects. 

The matrix element expressions for the HL bond eigenfunctions 
are given in the original paper of Evans,3 and a detailed discussion 
is to be found in the textbook of McWeeny and Sutcliffe.13 The 
diagonal matrix element (energy associated with a single HL bond 
eigenfunction) is given as 

K = Q + ZijKy - 1I2
1ZiJK1J (2) 

spin uncoupled 
coupled spins 

(13) Mcweeny, R.; Sutcliffe, B. Methods of Quantum Mechanics; Aca­
demic: New York, 1969. 

(•) lb) CO 

(d) al [f) 

Figure 2. Diagrammatic representation of the formula (eq 2 in text) for 
the energies of reactant-like (a-c) and product-like (d-e) diabatic states. 

Figure 3. Diagrammatic representation of the formula (eq 3 in text) for 
the resonance interaction. 

and the interaction (resonance) between two HL bond eigen­
functions is given by superimposing the structures of, for example, 
Scheme la/ lb and evaluating eq 3. In these expressions, Q is 

ft = S[Q + ZijKij - 2Z1JKy - 'Z2ZiJK1J] (3) 
odd„ number even number different 

of links of links islands 

the Coulomb integral and is assumed to incorporate the effects 
of the repulsions of the doubly occupied orbitals and the nuclear 
repulsions as well as the small effects arising from the singly 
occupied valence orbitals themselves. The Ky s are the exchange 
integrals and are assumed to be evaluated from eq 1. The overlap 
integral S is a simple function of the spin coupling.13 In the H2 

molecule, Q varies only slowly, showing a shallow minimum at 
the normal internuclear distance, but K1J becomes large and 
negative and accounts for over 90% of the binding energy of the 
molecule. For general molecular systems, Q will be dominated 
by the repulsions of the doubly occupied orbitals (i.e., those not 
involved in the bond making/breaking process) and the nuclear 
repulsions. Thus, the behavior of Q will be cosistent with simple 
steric repulsion arguments. The precise definition of "links" and 
"islands" is discussed in ref 13. We shall not discuss the details 
of eq 2 and 3; rather we will be content with an example that is 
relevant to the present work. 

We have illustrated the matrix elements (eq 2 and 3) for the 
particular bond eigenfunctions of Scheme Ia and Ib/Ic in Figure 
2 (diabatic energies) and Figure 3 (resonance interaction). We 
use a,- to denote the exchange integral (eq 1) involving the AO 
of the reactant bonds and ft to denote the corresponding exchange 
integral for the AO in the product bonds. 7,- is the exchange 
integrals of the nonbonded AO interactions. In Figures 2 and 
3, we have used solid lines for the positive stabilizing interactions 
(K is negative) and dashed lines for the negative destabilizing 
interactions. Note that the negative destabilizing interactions occur 
with a factor of l/2 in Figure 2, and the nonbonded contributions 
to the resonance interaction occur with a factor of -2 in Figure 
3. The matrix elements for the reactant-like diabatics (Figure 
2a-c) and product-like diabatics (Figure 2d-f) are images of each 
other (aside from the numerical factors of V2) in the sense that 
a stabilizing interaction in the reactant-like diabatic energy be­
comes destabilizing in the product-like diabatic energy. 

We can now rationalize the shapes of the curves in Figure 1 
by using simple qualitative arguments based upon the matrix 
elements of Figures 2 and 3. We need only assume that each 
interaction (Q + Ky) has approximately the form of a Morse 
potential3 (i.e., the expressions of eq 1 have the same form as in 
the HL expression for the hydrogen molecule). Let us consider 
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first the reactant-like diabatics (Figure 2, parts a, b, and c cor­
responding to two-bond concerted, one-bond concerted, and 
one-bond nonconcerted). At a given value of the reaction coor­
dinate, the magnitude of a for Figure 2a (two partly broken bonds) 
is expected to be smaller than in Figure 2b and c since the 12-34 
bonds will be shorter in the later case. However, this effect should 
be small, and one expects that the values of a should be similar 
in the various cases. Thus, we expect that the relative shape of 
the curves is controlled primarily by the destabilizing /3 and Q. 
If we compare part a of Figure 2 with parts b and c, we see that 
the interaction ^1 will fall to zero in parts b and c. Similarily, 
Q will be less repulsive for the one-bond process (for the same 
interfragment separation). Furthermore, the nonbonded inter­
actions 7 will be smaller in magnitude for Figure 2b and 2c. 
Consequently, the reactant-like diabatic curve for the nonconcerted 
one-bond reaction should lie below that for the concerted two-bond 
reaction, while the diabatic curves for the two one-bond processes 
should be very similar. 

If we examine the matrix elements for the product-like diabatics 
shown in Figure 2d-f, we see that they are the images (aside from 
the numerical factors of ! /2) ° f t n e interactions of Figure 2a-c 
in the sense that all the interactions have the same magnitude but 
opposite sign (except for the nonbonded interaction 7). Thus, 
we expect the product-like diabatic to be more attractive for the 
two-bond concerted process (Figure 2d) than for the nonconcerted 
one-bond process (Figure 2f) primarily because /J1 will be zero 
for the nonconcerted one-bond process and similarly for the 
concerted one-bond process. 

Thus, as discussed previously, we expect that the fact that the 
one-bond transition structure occurs at a smaller interfragment 
separation than the two-bond transition structure and the fact that 
the stabilizing/destabilizing effects are similar but opposite in sign 
for reactant-like and product-like diabatics will lead to the result 
that the energy corresponding to the intersection of the diabatics 
will be similar for one-bond and two-bond transition structures. 
We shall later demonstrate by numerical calculation that this is 
indeed the case. 

We now turn our attention to the resonance interaction. The 
matrix elements (eq 3) are given symbolically in Figure 3. Note 
that for the resonance interaction the signs of a and /3 are both 
positive. If we compare Figure 3a with Figure 3b and c we see 
that since /S1 is approximately 0 in Figure 3c, we expect that the 
resonance interaction for the two-bond concerted process will be 
larger than those for the one-bond processes. We are thus led 
to a conclusion which is different from that of Dewar1 for two-bond 
additions: 

The concerted synchronous two-bond and one-bond mechanisms 
for two-bond cycloadditions are expected to be competitive. This 
will be the case because the diabatic surfaces are expected to 
intersect at approximately the same value of the energy. The 
mechanistic preference should therefore be controlled by the 
resonance interaction. Therefore, one must expect a small 
preference for the synchronous mechanism by virtue of the larger 
resonance interaction in this case. 

The preceeding arguments have ignored the consequences of 
symmetry. We must now consider the consequences of molecular 
symmetry. In the Woodward-Hoffmann approach, one uses MO's 
that are adapted to the point group that persists along the reaction 
coordinate. In the HL-VB approach, the orbitals are not sym­
metry-adapted, so that the symmetry arguments are not so obvious. 
In the VB method one must symmetry-adapt the VB configura­
tions rather than the AO. (The principles are discussed for 
benzene in the text of Eyring et al.14) One then constructs the 
diabatic wave functions from those VB configurations that belong 
to totally symmetric irreducible representations of the point group 
that persists over the reaction coordinate. For our purposes, it 
will be sufficient to consider a point group that consists of at most 
two generators; the symmetry operation RR that leaves the 
reactants invariant (if it exists) and the symmetry operation RP 

(14) Eyring, H.; Walter, J.; Kimball, G. Quantum Chemistry; Wiley: New 
York, 1944. 

Figure 4. Symmetry elements (RR and RP) for a two-bond cycloaddition 
(a) and singly ionic charge-transfer configurations (b-i) that can be used 
to construct symmetry-adapated linear combinations of eq 5a and 5b in 
text. 

that transforms one reactant into the other (if it exists). For the 
concerted cycloaddition of two ethylenes, RR and RP can be taken 
as 180-deg/rotations; for the nonconcerted one-bond cycloaddition 
of two ethylenes to form the tetramethylene trans diradical, only 
RP (a 180-deg rotation) exists, while for the concerted two-bond 
Diels-Alder reaction only RR (a reflection plane) exists. We now 
proceed to show that simple symmetry arguments indicate that 
the resonance interaction will be approximately one-fourth of its 
value in the absence of symmetry if both RR and RP are present 
and one-half of its value in the absence of symmetry if only one 
of the elements RR or RP is present. Of course one expects this 
conclusion to hold also if the symmetry is perturbed slightly by 
substituents. 

As we have indicated, in the HL approach with distorted AO, 
the effects of charge transfer manifest themselves in the der­
ealization and nonorthogonality of the orbitals. By use of sec­
ond-order perturbation theory, it is possible to show11 that the 
resonance interaction can be written as 

( 7 / e f V = E Z W Z „ / ( £ R - E1) (4) 

where Z is the matrix element between the HL configuration (R 
and P) built from the orthogonal undistorted AO and a charge-
transfer configuration (/). 7/eff is an effective Hamiltonian defined 
in the space of the HL functions which will be discussed in some 
detail in the next subsection. The HL functions will always be 
totally symmetric; thus, only symmetry-adapted charge-transfer 
configurations that are totally symmetric can contribute to 
(^eff)RP. We expect that the major contribution to ( T ^ O R P will 
arise from singly ionic configurations shown in Figure 4. The 
symmetry operations RR and RP are shown in Figure 4a. The 
singly ionic charge-transfer configurations associated with the 
reactant-like diabatic are shown in Figure 4b-e and those for the 
product are given in Figure 4f-i. If we assume that both RR and 
RP exist, then only one totally symmetric combination is possible 
for reactant/product diabatic (eq 5). When the sum in eq 4 is 

Af = 1Mb + c + d + e) 

A? = %(f+g + h + i) 

(5a) 

(5b) 

carried out for these symmetry-adapated functions (;' in eq 4), 
one obtains the same matrix element contributions as in Figure 
3 except that the overall result is multiplied by '/4 . When only 
RR or RP is present, the symmetry-adapted configurations consist 
of only two terms multiplied by 1/21^2; thus, the overall magnitude 
of 7/Rpeff is '/2 of its value in the absence of symmetry. These 
very simple symmetry arguments must of course affect the reactant 
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and product diabatic curves as well in the sense that the values 
of Ep and ER must be correspondingly reduced. However, it can 
be seen from Figure 2a-c and d-f that these curves are affected 
in a complementary way so that the conclusion that the one-bond 
and two-bond diabatics intersect at the same height is not affected. 
Thus, the main effect of symmetry arguments is on the resonance 
interaction. One expects that the magnitude of the effect of 
symmetry on the resonance interaction will be much greater than 
the small differences in the exchange integrals discussed previously. 
In general where molecular symmetry is present, the RR symmetry 
element is missing from the one-bond process but is present in 
the two-bond process (while the RP element if it exists is present 
in both). For example, in the two-bond supra-supra cycloaddition 
(D21, symmetry) of two ethylenes, the 180-deg RR operation, which 
is present for this case, disappears in the one-bond nonconcerted 
(Clh symmetry) approach, while the RP symmetry operation is 
present for both. Thus, in the case where the RR symmetry 
operation exists for the concerted two-bond reaction, the one-bond 
reaction (either concerted or nonconcerted) where RR does not 
exist will be preferred due to the magnitude of the resonance 
interaction (which according to the above discussion will be about 
twice as large in the one-bond process). In summary, the argu­
ments that neglect symmetry favor the two-bond mechanism 
because of the resonance interaction. On the other hand if the 
RR symmetry element exists for the two-bond process, the res­
onance interaction for the two-bond concerted reaction will be 
approximately one-half of the value for the one-bond process. 

In conclusion, we must add a note of caution. The preceeding 
arguments are implicitly based on the assumption that the in­
teraction of the diabatic surfaces via the resonance interaction 
produces a transition structure saddle point surface. While this 
seems obvious in a two-dimensional space, this may not always 
be true. The nature of the resonance interaction may be such that, 
at the minimum of the seam of intersection of the diabatic surfaces, 
after the interaction is "switched on" no saddle point surface (and 
thus no transition structure) exists. In our study of the concerted 
and nonconcerted cycloaddition of two ethylenes,7 at the 4-3IG 
basis set level, the diradical minimum (for the nonconcerted 
one-bond process) has a barrier to fragmentation of less than 1 
kcal/mol. Similarily, in our calculations on the Diels-Alder 
reaction,15 the diradical minimum/one-bond transition structure 
did not exist at the 4-3IG level. Thus, while the preceeding 
arguments predict, for example, that the one-bond asynchronous 
mechanism for the Diels-Alder is preferred (by virtue of the 
symmetry effects on the resonance interaction), there is no 
guarantee that a transition structure for this process actually exists. 
Only a full geometry search can answer this question. Thus, in 
our numerical computations which follow, we are limited to 
showing that the preceeding arguments are valid for particular 
examples where the transition structures have been documented. 

3. Rigorous Implementation of the Diabatic Surface Model 
We shall now describe briefly how the scheme discussed above 

can be implemented in the context of the MC-SCF method that 
has been used to optimize the geometries to be considered in several 
examples. We shall be content with only a brief summary of the 
main ideas since the method has been fully documented else­
where. 4b'c 

We now consider a similarity transformation of the full CI 
Hamiltonian for four electrons in four orbitals (Scheme II). We 
have partitioned the full CI space into a block spanned by the 
reference configurations R and P and a secondary block spanned 
by the remainder of the configurations. We now seek the 
transformation matrix U which reduces the full CI Hamiltonian 
(left-hand side of Scheme II) to the blocked form (right-hand side 
of Scheme II) where the interaction matrix elements between R 
and P and the remainder of the configurations are zero. The 
eigenvalues of the submatrix Heff (an effective Hamiltonian 
matrix) corresponding to the right-hand side of Scheme II will 

(15) Bernardi, F.; Bottoni, A.; Robb, M. A.; Field, M. J.; Hillier, I. H.; 
Guest, M. F. J. Chem. Soc, Chem. Commun. 1985, 492. 

Bernardi et al. 

Scheme II 

Ifrlfo 

I 
^ H'ff 

0 

0 

now reproduce two eigenvalues (and thus two adiabatic surfaces) 
of the original Hamiltonian matrix exactly. Thus, the diagonal 
elements of HefT are the diabatic surface energies, the off-diagonal 
element is the resonance interaction, and the Pth and Rth columns 
of U give the wave functions for the diabatic surfaces of reactant 
and product. In our work we have used the canonical Van 
Vleck16""19 method to compute the transformation U. 

We now give some particulars of the implementation and in­
terpretation of this scheme in the present context. The Hamil­
tonian which appears on the left-hand side of Scheme II is con­
structed from configurations used in a four-orbital, four-electron 
CAS MC-SCF where the converged MOs have been subsequently 
localized onto the atomic centers. Thus, the space of the full 
Hamiltonian on the left-hand side of Scheme II corresponds to 
a full VB space where the configurations have been constructed 
from orthogonal atom-localized orbitals. The coefficient vector 
(diabatic wave function) corresponding to the Pth or Rth column 
of the transformation matrix U will be dominated by the corre­
sponding Pth or Rth component corresponding to the configu­
rations of Scheme Ia or Ib with much smaller contributions from 
charge transfer, etc. The effective Hamiltonian which appears 
on the right-hand side of Scheme II corresponds to the projection 
of the full VB Hamiltonian onto the space of the configurations 
of Scheme Ia and Ib/c. Thus, the effective Hamiltonian is the 
Hamiltonian of the HL-VB space where the configurations have 
been constructed from distorted nonorthogonal orbitals (resulting 
from the charge-transfer configurations that appear in the 
transformation matrix U). A second-order perturbation estimate 
of the off-diagonal elements of the effective Hamiltonian is given 
in eq 4 and the magnitude of the resonance interaction is thus 
determined mainly by charge-transfer effects (the zeroth-value 
being very small) or equivalently the resonance interaction results 
from the distortion and overlap of the atomic orbitals (as in the 
MO treatment of benzene). 

At this point we need to give a very brief discussion of the spin 
coupling that is used in numerical calculations. We shall limit 
our discussion to the four-orbital/four-electron case used in these 
examples: for a general background the reader is referred to the 
book by Pauncz.20 For interpretive purposes, the Rumer bond 
eigenfunctions are the obvious choice of CI basis in which to 
formulate our discussion of bonding interactions. However, for 
computional purposes, the orthogonal Yamanouchi-Kotani basis 
is usually used.16 The Yamanouchi-Kotani basis is obtained from 
the Rumer basis by Schmidt orthogonalization (see the book by 
Pauncz16 for details). However, the simple physical interpretation 
of the Rumer basis could be retained by some other orthogo­
nalization procedure (such as symmetric orthogonalization). This 
in turn merely corresponds to an orthogonal transformation of 
the Yamanouchi-Kotani basis. Nevertheless, the product-like 
Rumer function is identical with the Yamanouchi-Kotani spin 
function if the Schmidt orthogonalization is started with this 
function, while the reactant-like Rumer function is obtained by 
starting the orthogonalization with this function. It is thus ap­
parent that in the Yamanouchi-Kotani basis the spin coupling 
must be allowed to "rotate" through an angle of 30° as a function 
of the reaction coordinate (since the overlap of the Rumer 
functions is one-half, Schmidt orthogonalization corresponds to 

(16) Van Vleck, J. H. Phys. Rev. 1929, 33, 467. 
(17) Jordahl, O. M. Phys. Rev. 1934, 45, 87. 
(18) Kemble, E. C. Fundamental Principles of Quantum Mechanics; 

McGraw-Hill: New York, 1937; p 394. 
(19) Shavitt, I.; Redmon, L. T. J. Chem. Phys. 1980, 73, 5711. 
(20) Pauncz, R. Spin Eigenfunctions; Plenum: New York, 1979. 
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Figure 5. Bond eigenfunctions for a (4 + 2) cycloaddition reaction. In 
a four-orbital representation, a and b are used with the ab pair doubly 
occupied. In a six-orbital representation, the main additional contribution 
arises from d. 

rotation of one of the Rumer functions by 30°). However, since 
we know the transition structure geometry, we simply choose the 
spin coupling at the transition structure geometry so that the two 
diabatic surfaces intersect exactly at the transition structure 
geometry in order to avoid this rather arbitrary rotation. 

In the calculations to be discussed subsequently, we shall treat 
all two-bond addition reactions as four-orbital/four-electron 
problems in both the MC-SCF and (via the Van Vleck trans­
formation just discussed) the HL-VB formalisms. While for a 
(2 + 2) cycloaddition this is the only possibility; for a (4 + 2) 
cycloaddition the situation is less obvious, and some justification 
is required to avoid confusion with traditional VB methods. If 
we take the Diels-Alder reaction or a 1,3-dipolar cycloaddition 
as an example, then the argument becomes clear. On the one 
hand, each reaction involves the making/breaking of two bonds 
so that four active orbitals (i.e., orbitals that may have other than 
double occupancy) and four electrons are involved. Thus, an 
MC-SCF with four orbitals and four electrons will be adequate 
to describe the transition structure region. On the other hand, 
by analogy with the VB picture of resonance in benzene, one might 
be lead to expect that, because one needs five HL configurations 
for six electrons in six orbitals to describe the resonance energy, 
a six-orbital/six-electron active space might be required to describe 
the transition structure and the diabatic surface intersection. (This 
picture of resonance was the one used by Evans.2,3) In fact, a 
six-active-orbital/six-electron space is not required within the 
formalism we use, since as in benzene in an MO description the 
resonance effect manifests itself in terms of the delocalization of 
the AO to form a MO. We now discuss this argument in more 
detail. 

In Figure 5 we give the five HL structures for six electrons in 
six orbitals. For the Diels-Alder problem, the ab pair corresponds 
to the middle pair of carbon atoms of butadiene, while for a 
1,3-dipolar cycloaddition the ab pair corresponds to the lone pair 
on the central atom of the 1,3 dipole. In a four-orbital/four-
electron model, the two HL configurations required to describe 
the transition structure are configurations of Figure 5a and b where 
the ab pair remains spin-coupled (i.e. is a "passive" doubly occupied 
core orbital). In the six-electron representation, the configuration 
of Figure 5d will interact with both of the configurations of Figure 
5a and b. We expect that the configurations of Figure 5c and 
e will be negligible. At first sight these two pictures seem un­
related. However, the effect of the interaction of the configurations 
of Figure 5a and b with Figure 5d is merely to delocalize the 
orbitals f and c onto the centers a and b. On the other hand, one 
could also obtain the four-electron model from the six-electron 
model by using the Van Vleck transformation just discussed and 
projecting the six-active-orbital CI Hamiltonian onto the space 
of the four-active-orbital space of configurations of Figure 5a and 
b. Again, the effect of the configuration of Figure 5d would be 
equivalent to a delocalization of the AO f and c onto the centers 
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a and b. Of course, the numerical results for a six- and four-
electron treatment will be different for the same reason that the 
VB and MO methods give different results for the resonance 
energy of benzene (i.e., the six-orbital/six-electron VB treatment 
spans a variational space which is larger than the single config­
uration MO space). In our method we localize the four active 
orbitals onto atomic centers. If these active orbitals involve only 
the centers c-f, then the orbitals will only localize on these centers. 
On the other hand, if the four active orbitals involve contributions 
from centers a and b, then the resultant atom-localized AO will 
have "delocalization tails" on centers a and b. This result is 
determined by the nature of the MC-SCF orbitals. Thus, the need 
to describe the making/breaking of two-bonds determines the 
number of active orbitals, and hence the use of four active orbitals 
for two-bond reactions should be adequate. In the subsequent 
decomposition using atom-localized AOs in configurations of 
Figure 5a and b, the effect of the configuration of Figure 5d is 
to delocalize the c and f AOs onto centers a and b. In our recent 
study15 of the Diels-Alder reaction, the interfragment distance 
was changed by only 0.04 A at the transition structure by the 
change from four to six active electrons. Further, in our four-
electron MC-SCF calculations, the middle ab pair was localized 
with negligible contributions from atoms f and c (Figure 5). Thus, 
in our discussion of (4 + 2) cycloadditions, we shall be concerned 
with the resonance interaction between HL configurations a and 
b of Figure 5. The effect of the configuration of Figure 5d is in 
fact implicitly included in this treatment and manifests itself as 
a delocalization of the orbitals f and c onto the a-b bond. 

All computations presented in this work have been performed 
at the ST0-3G level21 using MC-SCF codes22'23 that have been 
incorporated into the GAUSSIAN 80 suite24 of programs. We have 
demonstrated in previous work that the topological features 
(number and nature of minima and transition structures) of the 
potential energy surfaces we shall study are in agreement at 
ST0-3G and 4-3IG levels6'7,9 (although the geometries and 
magnitude of energetic effects are obviously quite different). 

4. Results and Discussion. 
In this section we will consider three examples that illustrate 

the ideas that we have considered previously. 
(i) 1,3-Dipolar Cycloaddition of Acetylene to Fulminic Acid. 

Concerted vs. Two-Step Mechanism. Recently9 we have located 
(at the MC-SCF level by using STO-3G and 4-31G basis sets) 
the transition structures (III and IV) and diradical intermediates 
(V) for the addition of acetylene (I) to fulminic acid (II) (Scheme 
III). Our calculations9 show that the concerted transition state 
(HI) is lower than the nonconcerted transition state (IV) by 5 
kcal/mol at the 4-31G level (7 kcal/mol at STO-3G) and that 
the barrier for the second stage of the reaction (V to VI) lies below 
III or IV. In ref 25, the opposite conclusion was reached, namely 

(21) Hehre, W. J.; Stewart, R. F.; Pople, J. A. J. Chem. Phys. 1969, 51, 
2657. 

(22) Eade, R. H. A.; Robb, M. A. Chem. Phys. Lett. 1981, 83, 362. 
(23) Schlegel, H. B.; Robb, M. A. Chem. Phys. Lett. 1982, 93, 43. 
(24) Binkley, J. S.; Whiteside, R. A.; Krishnan, R.; Seeger, R.; De Frees, 

D. J.; Schlegel, H. B.; Topiol, S.; Kahn, L. R.; Pople, J. A. QCPE 1981, 13, 
406. 
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Table I. Diabatic Energies (in au) Evaluated at the Transition 
Structure Geometries (III and IV) for the 1,3-Dipolar Cycloaddition 
of Fulminic Acid (II) to Acetylene 

diabatic energy for product-like 
reactant-like surface 

resonance interaction 
adiabatic energy 

III 
(rc_c = 2.37 A) 

-241.1922 

-0.1134 
-241.3056 

IV 
(rc_c = 2.12A) 

-241.2003 

-0.0947 
-241.2950 

that the nonconcerted path was favored. However, in ref 25 the 
methods used were not able to treat the concerted and noncon­
certed pathways on an equal footing as in the MC-SCF results 
reported in ref 9. The sensitivity of the results in ref 25 to the 
inclusion of dynamic electron correlation may be an artifact of 
this unbalanced description. 

When the two bonds that are formed in a pericyclic reaction 
are different (as in the present case where a C-C and a C-O bond 
are formed), it is difficult to assess clearly whether a concerted 
process should be called synchronous or asynchronous. The process 
might be synchronous with respect bond length yet asynchronous 
with respect to bond strength because of different stretching 
potentials for the two newly formed bonds. However, as discussed 
in ref 20 of ref 25, the assignment of diagonal force constants for 
the C-C and the C-O stretches is dependent upon an arbitrary 
choice of internal coordinates in the case of cyclic molecules. For 
this reason it is preferable to use a criterion based on the extent 
of new bond formation as a criterion for assessing whether a 
concerted process is synchronous or asynchronous. If we take R, 
the bond length in the product, as the reference and denote the 
bond length in the transition structure by r, then the extent of 
new bond formation is given by 5 = R/r. For the concerted 
transition structure III, the values of S are 0.64 (0.60) and 0.62 
(0.66) for the C-O and C-C bonds, respectively, at the STO-3G 
(and 4-31G) level.9 According to this criterion, the concerted 
process is synchronous, and we have a situation where a concerted 
synchronous two-bond reaction appears to be preferred over the 
first step of the two-step process. 

We now attempt to rationalize this behavior by using the di­
abatic surface method which has been discussed in the previous 
section. Fulminic acid (II) can be thought of as having two 
allyl-like systems of three 7r-orbitals: an in-plane ir set and an 
out-of-plane it set (incipient delocalized ir-orbitals). Similarly 
the acetylene has two sets of ethylene 7r-orbitals: an in-plane set 
and out-of-plane set. In our MC-SCF calculations, we take as 
active orbitals the HOMO-LUMO pair for the in-plane set of 
fulminic acid orbitals and the corresponding acetylene in-plane 
orbitals. The MC-SCF orbitals are then localized by using an 
intrinsic energy localization procedure. The resultant orbitals are 
localized on the C and O atoms of the fulminic acid and the C 
atoms of the acetylene. With this choice of orbitals, we have 
computed the first and second derivatives of each diabatic surface. 
In ref 26 this procedure has been tested by finding the minimum 
of the seam of intersection of the two diabatic surfaces in this type 
of quadratic representation. The "diabatic transition structure" 
so obtained is very close to the true adiabatic transition structure. 
In order to convey this representation of the diabatic surfaces in 
a simple way, the first and second derivative information has been 
projected onto the transition vector (eigenvector of the adiabatic 
second derivative matrix corresponding to the direction of negative 
curvature) and the resulting one-dimensional quadratic information 
plotted against the interfragment C-C bond length. These curves 
have then been "continued" to the corresponding product geom­
etries. 

The results are collected in Figure 6, and the numerical data 
are summarized in Table I. Curves C and D represent the 
diabatic surfaces for the reactant (Scheme Ia) and the product 

(25) Hiberty, P. C; Ohanessian, G.; Schlegel, H. B. J. Am. Chem. Soc. 
1983, 105, 719. 

(26) McDouall, J.; Robb, M. A.; Bernardi, F. Chem. Phys. Lett. 1986,129, 
595. 
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Figure 6. Diabatic curves for the 1,3-dipolar cycloaddition of fulminic 
acid (II) to acetylene (I) forming isoxazole (VI). (A') Reactant-like 
diabatic curve for the first step of the two-step process (I + II to V via 
IV). (B') Product-like diabatic curve for the first step of the two-step 
process (I + II to V via IV). (C) Reactant-like diabatic curve for the 
concerted synchronous process (I + II to VI via III). (D) Product-like 
diabatic curve for the concerted synchronous process (I + II to VI via 
III). (E) Adiabatic curves for the first step of the two-step process (I 
+ II to V via IV). (F) Adiabatic curves for the concerted synchronous 
process (I + II to VI via III). 

(Scheme Ib) for the concerted synchronous process (I + II going 
via III to VI). Similarly curves A' (Scheme Ia) and B' (Scheme 
Ib) represent the analogous result for the first step (I + II going 
via IV to V) of the two-step process. Curves E and F are the 
adiabatic energies represented in the same way as the diabatic 
energies. Finally Y/Y' and Z /Z ' represent the continuation of 
the curves D and B' or C and A' to the minima V and VI. 

Curves C and D of Figure 6 should be compared with the 
correspondingly labeled, qualitative results of Dewar to be found 
in Figure 2 of ref 1 and the qualitative curves given in Figure 1 
of the present work. Similarily curves A' and B' of Figure 2 should 
be compared with curves A and B of Figure 3 of ref 1 and A' and 
B' of Figure 1 of the present work. 

It can be seen that the computed diabatic curves (shown in 
Figure 6) have the expected qualitative behavior in agreement 
with our earlier qualitative predictions (but in disagreement with 
ref 1 for reasons discussed above). From these computed results 
one observes that (a) the reactant-like diabatic is more repulsive 
for the concerted synchronous reaction (curve C) than for the first 
step of the two-step (curve A') reaction and (b) the product-like 
curve is more attractive for the concerted synchronous reaction 
(curve D) than for the first step of the two-step (curve B') reaction. 

These two effects partly cancel with the result that the height 
of the intersection is almost the same for both processes. The 
resonance interaction (7/eff)Rp (difference between the intersection 
point and the adiabatic energies) thus plays the deciding role. The 
difference between the heights of the intersection points is 5 
kcal/mol, with the nonconcerted one-bond intersection being lowest 
in energy. On the other hand, the resonance interaction for the 
two-bond concerted process is 11.7 kcal/mol larger than for the 
nonconcerted process. This is consistent with the fact that the 
barrier height for the concerted two-bond process is only 6.7 
kcal/mol (4.7 kcal/mol at the 4-3IG level) lower than for the 
nonconcerted process. Thus, the concerted process is favored by 
the resonance interaction in agreement with the qualitative dis­
cussion given previouslv. 
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Table II. Diabatic Energies (in au) for the Cycloaddition of Two 
Ethylene Molecules 

supra-supra cis (coplanar) trans 
concerted concerted nonconcerted 
two bond one bond one bond 

diabatic energy for 
reactant/product 

resonance energy 
adiabatic energy 

-154.0728 -154.0694 

0.0545 
-154.1273 

0.0967 
-154.1661 

-154.0732 

0.1018 
-154.1751 

There is one final point that requires some discussion at this 
point. In our MC-SCF geometry optimizations,9 we observed that 
the barrier for the second stage of the reaction (V to VI) lies below 
III or IV. From Figure 6 it is apparent that the diradical in­
termediate (V) and the cyclic product (VI) lie in a region of the 
potential surface that is dominated by the product-like diabatic 
(Scheme Ib/c). Thus, the second barrier is essentially a rotational 
potential of low energy and does not arise from a diabatic surface 
crossing. In his paper,1 Dewar arrives at a rather different con­
clusion. In Figure 3 of ref 1, three different diabatic surfaces are 
used: reactant-like (similar to our work), diradical-like (similar 
to our product diabatic), and a surface associated with the cyclic 
product. Dewar1 then postulates that for many two-step reactions 
the barrier associated with the intersection of the latter two di­
abatic surfaces will be larger than that associated with the first 
two diabatic surfaces. However, as we have previously pointed 
out, the configuration shown in Scheme Ib/c can describe either 
two bonds or a single bond and a diradical. Thus, the formation 
of the second bond from the diradical intermediate involves no 
electronic reorganization associated with a diabatic surface 
crossing. 

(ii) Cycloaddition of Two Ethylenes Producing Cyclobutane or 
the trans -Tetramethylene Diradical. A comparison of the 
Woodward-Hoffmann forbidden (2S + 2S) cycloaddition (con­
certed two bond) of two ethylene molecules (I) yielding cyclo-
butadiene (VI) via a concerted two-bond transition state (II) or 
concerted one-bond transition state (III) as opposed to the two-step 
(one-bond) addition to form the tetramethylene diradical (IV) 
provides an interesting contrast to the previous example (Scheme 
IV). In previous work,7 we have located the stationary points 
on the potential energy surface for II, III, and IV as well as the 
various minima. It turns out that the Hessian for II and III has 
two directions of negative curvature so that only IV is a true 
transition structure. However, since critical points exist for the 
two-bond concerted process (II), the one-bond concerted process 
(III), and the one-bond nonconcerted process (IV), it is of interest 
to examine the role of the resonance interaction (and the effect 
of symmetry) in these three mechanisms. 

The diabatic surface data are displayed in Figure 7 in the same 
manner as in the previous subsection and is also collected in Table 
II. The diabatic curves have the behavior predicted earlier. The 
intersection point is at a similar value of the energy for the three 
possible processes. The reactant-like diabatic curve for the 

Figure 7. Diabatic curves for the (2 + 2) cycloaddition of two ethylenes. 

Table III. Diabatic Energies (in au) for the Addition of H2 to CO 

diabatic energy for 
product-like surface 

diabatic energy for 
reactant-like surface 

resonance interaction 
adiabatic energy 

transition structure 

synchronous0 

-112.17654 

-111.8713 

-0.0623 
-112.1872 

asynchronous6 

-111.9967 

-111.9966 

-0.2044 
-112.2004 

"Figure 8 with C10 symmetry. 'Figure 8. 

two-bond concerted process (I—II—VI) is much more repulsive than 
for the one-bond processes (I—III—VI or I-IV-V), and the prod­
uct-like diabatic curves have the image behavior. The resonance 
energy for the two-bond concerted process is much smaller than 
for the one-bond processes by virtue of symmetry. Thus, the 
relative energies of the transition structures are controlled mainly 
by the resonance interaction. As predicted by our qualitative 
discussion, the resonance interaction of the two-bond concerted 
process (I—II—III) where RR and RP exist has a value that is about 
one-half of the value for the one-bond processes (I—III—VI or 
I-IV-V) where only the symmetry element RP exists. This leads 
to the fact that the structures III and IV have considerably lower 
energies than II. Thus, while the topology of the potential surface 
(the number and nature of the stationary points such as minima 
and transition structures) is controlled by the diabatic surfaces 
themselves (as we have demonstrated in previous work8), the 
relative energetics are controlled mainly by the magnitude of the 
resonance interaction. 

In contrast to the previous example of a 1,3-dipolar cyclo­
addition (Woodward-Hoffmann allowed), in the present example 
the magnitude of the resonance interaction is determined by 
symmetry considerations. Further, these symmetry considerations 
will continue to hold approximately when the system is perturbed 
slightly (such as by functional group substitution). 

(iii) Addition of H2 to CO. Concerted Two-Bond Reaction vs. 
Concerted one-Bond Reaction. As a final example we consider 
the addition of H2 to CO. This process is Woodward-Hoff­
mann-forbidden in C2[, symmetry and takes place by a highly 
asymmetric transition state of Cs symmetry in which one of the 
C-H bonds is almost completely formed (our geometry optimi­
zation at the MC-SCF level is to be found in ref 23). Thus, it 
represents an example of a concerted asynchronous reaction. The 
transition state for a C2„ approach occurs at a point where the 
H2 moiety is completely dissociated into two H atoms. In order 
to compare the Cs and C2,,. approaches, we have performed our 
C2v computations at a geometry where all the parameters (H-H 
distance, CO-HH distance) are the same as for the Cs transition 
structure. 

In order to construct the diabatic surfaces for the asynchronous 
concerted one-bond process, we take orbitals 1 and 2 (Scheme 
I) to be the carbon lone-pair <r-orbital of CO and the in-plane pir 
atomic orbital of CO, respectively. Similarly for orbitals 3 and 
4 (Scheme I), we take the Is orbitals of H2 (i.e., we use atom-



552 / . Am. Chem. Soc, Vol. 109, No. 2, 1987 Bernardi et al. 

H 

H C* *0 

Figure 8. Geometry for the transition structure of H2 + CO (optimized 
at the MC-SCF/ST0-3G level). The curved arrows give the general 
form of the transition vector. 

Scheme V 

localized AO for H2; however, for CO we have chosen the two 
orbitals of the C atom to be canonical). These are illustrated in 
Scheme Va. For the corresponding synchronous pathway we have 
used "equivalently" localized orbitals for the C atom (Scheme Vb). 
For the asynchronous pathway, in Figure 8 we have sketched the 
form of the transition vector along where the diabatic gradients 
and second derivatives have been projected for the asynchronous 
approach. It should be noted that as the distance between the 
carbon atom and the center of mass of H2 is decreased, the H-H 
bond stretches and the angle between the H2 and the CO opens 
up. Thus, as one C-H bond is being formed, the other is actually 
being weakened. For the corresponding concerted synchronous 
pathway, which leads only to dissociation of H2 into 2H (i.e., the 
true C20 transition state occurs at an infinite H-H distance), in 
order to simulate a Clc approach, we have made the projection 
of the diabatic forces and second derivatives steps along the same 
transition vector as for the asynchronous pathway keeping the 
angle with CO fixed at 90° with all other variables the same. 

In Figure 9 we have illustrated the projections of the first and 
second derivatives of the diabatic surfaces in the same manner 
as for previous examples. For the asymmetric path, A and B 
represent the product-like and reactant-like diabatics, and the 
difference between this curve and the adiabatic curve E arises from 
the resonance interaction, (fft!!)KP. Curves C, D, and F represent 
the corresponding information for this C211 symmetric path. 

Before drawing the readers attention to the salient points of 
these diabatic curves, we should remind the reader that when a 
concerted synchronous and concerted asynchronous process are 
compared, the diabatics must coincide at infinite interfragment 
separation and also at the product geometry. At intermediate 
geometries the asynchronous path is curved, and thus the diabatic 
and adiabatic surfaces will differ. In Dewar's paper,1 in Figure 
2, he has assumed that the diabatic curves for, say, the product 
for the concerted synchronous reaction and the concerted as­
ynchronous reaction will coincide only at the product geometry. 

Returning to our discussion of Figure 9, on examining curves 
C and D (product-like and reactant-like diabatics for the C21, 
synchronous approach), we see that the intersection occurs on the 
reactant side of the transition state (i.e., at the C5 transition 
structure geometry, the product-like C2v diabatic curve is con­
siderably lower in energy than the reactant-like C21, diabatic curve). 
The diabatic surface intersection in the C211 pathway corresponds 
to two partly formed bonds. However, at the Cs transition state, 
one bond (C-H2) is almost completely formed and the intersection 
corresponds to the intersection of the reactant-like diabatic with 
a diabatic that is similar to the one-bond product-like diabatic 
surfaces computed for the one-bond nonconcerted processes 
considered previously. The resonance interaction, (7^eff)Rp, at the 
Cs transition structure is very large (128 kcal/mol) compared to 
the value at the corresponding point on the C20 pathway (39 
kcal/mol) as expected from symmetry considerations. Thus, while 
the reactant-like diabatic surface for the two-bond synchronous 

Figure 9. Diabatic curves for the addition of H2 to CO. (A) Product-like 
diabatic curve for the asynchronous path. (B) Reactant-like diabatic 
curve for the asynchronous path. (C) Product-like diabatic curve for the 
synchronous (C211) path. (D) Reactant-like diabatic curve for the syn­
chronous (C2^) path. (E) Adiabatic curves for the synchronous path. (F) 
Adiabatic curves for the asynchronous path. 

process is highly stabilized, the very small value of the resonance 
interaction is not sufficient to allow the diabatic surfaces to interact 
sufficiently to allow a transition structure to form on the C2c 

pathway. Clearly, it is the resonance interaction that is critical 
in the mechanism. 

5. Conclusions 
In this work we have attempted a qualitative and quantitative 

study of the diabatic curves used by Dewar1 in his formulation 
of selection rules for multibond reactions. In agreement with the 
conjecture of Evans2,3 and Dewar,1 we have illustrated that, for 
the two-bond reactions studied in this work, the resonance in­
teraction plays a important role in mechanistic considerations in 
the preference of concerted synchronous (two-bond) vs. con-
certed/nonconcerted asynchronous (one-bond) reactions. In 
contrast to Dewar1 we have illustrated that in a comparison of 
one-bond vs. two-bond mechanisms, the diabatic curves intersect 
at approximately the same value of the energy, and thus, the 
resonance energy can play the deciding role. Thus, while the 
topology of the potential energy surface appears to be determined 
by the diabatic surfaces alone8 (i.e., the transition structures lie 
on the minima of the seam of intersection), the relative energetics 
may be determined almost completely by the resonance interaction. 

For Woodward-Hoffmann-allowed reactions, qualitative ar­
guments show that a concerted two-bond process may be favored 
over the nonconcerted one-bond process by virtue of the resonance 
interaction. This conjecture is illustrated by the example of the 
Woodward-Hoffmann-allowed reaction of fulminic acid with 
acetylene. In this example, the magnitude of the resonance in­
teraction is larger at the transition-state geometry corresponding 
to the concerted synchronous process than at the transition state 
for the first step of the two-step process. This leads to the fact 
that the two processes can be competitive in cases such as the one 
studied here where the reactant-like and product-like diabatic 
curves intersect at similar heights. 

As we have discussed previously, the magnitude of the resonance 
interaction is reduced if symmetry is present. Further, one expects 
that the magnitude of this effect will be much larger than the small 
differences in exchange integrals that lead to the preference for 
the synchronous two-bond mechanism in the case of the 1,3-dipolar 
cycloaddition. This argument is illustrated by the calculations 
on the cycloaddition of two ethylene molecules and the addition 
of H2 to CO. Thus, for the cycloaddittion of two ethylenes 
(Woodward-Hoffmann forbidden in a supra-supra approach), 
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the resonance interaction at the transition structure corresponding 
to the concerted synchronous process is about one-half (from 
symmetry considerations since RR is present) its value for the 
asynchronous one-bond process (where the RR element is not 
present). In common with the Woodward-Hoffmann approach, 
one expects that arguments based on symmetry will still hold when 
the system is perturbed slightly by functional group substitution. 

In all our calculations on two-step reactions,6'9 the diradical 
intermediate with one bond formed lies on a surface that is 
dominated by the same product-like diabatic surface as the final 
cyclic product, and thus, the second barrier to form products is 
very small. 

Of course there is a great debate on the synchronous vs. non-
synchronous nature of cycloadditions (see the discussion in ref 
1). We have treated only three examples numerically in this paper. 
These examples have been chosen because the topology of the 
potential surfaces is reliably documented at the MC-SCF level 
where the diradical one-bond transition structure can be deter­
mined with the same accuracy as the transition structure for the 
synchronous path. While the calculations reported in this work 
have been carried out at the STO-3G level (for reasons of econ­
omy), in all of the cases studied the preference for concerted/ 
nonconcerted pathways at the 4-3IG is correctly reproduced at 
the STO-3G level. Thus, while basis set effects appear to be very 
important in determining the stability of the products relative to 
the reactants and the barrier heights (see ref 9, for example), the 
relative energies of the concerted and nonconcerted transition 
structures appear to be reliable at the STO-3G level. Thus, for 
these examples, the qualitative arguments of section 2 of this paper 
have withstood the test of numerical computation. 

Finally, we should point out that arguments based upon diabatic 
surface intersections do not guarantee that the transition structure 
for one or the other of the possible pathways actually exists. Thus, 
for ethylene cycloaddition, the minimum and transition structures 
for the one-bond nonconcerted process virtually disappear for this 
preferred mechanism, similarily, on the basis of the symmetry 
arguments presented previously, the one-bond mechanism for the 
Diels-Alder reaction should be preferred since the RR symmetry 
element (a reflection plane) is present for the synchronous ap­
proach. However, at the MC-SCF 4-3IG level no transition 
structure exists15 for the one-bond mechanism. In other words, 
the existence of a minimum of a diabatic surface crossing does 
not imply that the saddle point surface of the transition structure 
will actually be formed when the resonance interaction is "switched 
on". This fact is also demonstrated in the example of the addition 
of CO to H2 considered in this work. 

In conclusion, we believe that the present results indicate that, 
while the electronic origin of the reaction barrier6"9 can be un­
derstood from a knowledge of the diabatic surface intersections 
alone, the resonance interaction plays the dominant role in dis­
criminating between concerted synchronous two-bond and con-
certed/nonconcerted one-bond reaction mechanisms since the 
diabatic surfaces for the possible competing mechanisms intersect 
at similar values of the energy. 
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Abstract: Thermolysis of benzocyclobutene (13CH2, 99%) gives styrene labeled in the /3 (48%), ortho (30%), a (14%), meta 
(4%), and para (4%) positions. The major labels (/3 and ortho) are consistent with a mechanism involving interconversions 
of the isomeric tolylmethylenes and the methylcycloheptatetraenes. This mechanism also involves interconversion of o-
tolylmethylene with o-xylylene and p-tolylmethylene with p-xylylene. A minor mechanism produces 25% of the styrene. This 
mechanism involves cleavage of the aryl carbon to the methylene carbon bond in benzocyclobutene followed by hydrogen transfer 
to produce styrene. Thermolysis of p-xylylene produced from [2.2]paracyclophane gives styrene (55%), p-xylene (31%), 
benzocyclobutene (4%), benzene (4%), and toluene (3%). Thermolysis of [2.2]metacyclophane gives styrene (18%), p-xylene 
(25%), w-xylene (3%), benzocyclobutene (1%), benzene (7%), and toluene (22%). 

The thermal isomerization of benzocyclobutene to styrene1 

provides an interesting mechanism problem. The simplest 
mechanism for this process involves homolysis to a diradical 
followed by hydrogen transfer (mechanism I). An alternative, 

mechanism I 

! = 1 3 C 
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mechanism II, involves the interconversions of the tolylmethylenes 
and methylcycloheptatetraenes established by matrix isolation 
studies.2 This mechanism also explains the thermolysis (150 0C) 
of otolyldiazomethane to benzocyclobutene and styrene reported 
by Vander Stouw and Shechter3 and the thermolysis (420 0C) 
of m- and p-tolyldiazomethanes to benzocyclobutene and styrene 
reported by Baron et al.4 Mechanism II is consistent with the 
13C-labeling experiment of Hedaya and Kent5 (eq 1) and with 
the 2H-labeling experiment of Vander Stouw et al. (eq 2).6 
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